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Learning causal Bayesian network structure

I Purely observational (non-experimental) data on a number of
random variables are given

I Estimate direct cause-effect relations between these variables,
represented by a directed acyclic graph (causal BN structure)
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Constraint-based learning

I Based on independence relations

I Weak commitments as to the nature of causal relationships

1. Markov assumption states
“given all its parents, every variable is independent of all its
non-descendants”.

2. Faithfulness/stability assumption (Spirtes et al. 1993; Pearl 2000)

states “only the independence relations are true which are
implied by the Markov assumption”.
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From independence constraints to causal BN structure

Identifying ∧-structure by independence constraints

(X 6⊥⊥Y ) and (X ⊥⊥Y |Z ) ⇒ ∧-structure

Markov equivalence class of BN structures

↪→ Learning absence of edges in causal BN structure
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∨-structure identification

Markov and faithfulness assumptions lead to a unique graph.

(X ⊥⊥Y ) and (X 6⊥⊥Y |Z ) ⇒ ∨-structure

Identification of ∨-structure (collider on Z )

↪→ Learning orientation of edges in causal BN structure
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Inductive causation

I Finding conditional independence relations

I Taking Markov and faithfulness assumptions

1. Learning absence of edges ↪→ skeleton of BN structure
2. Learning orientation of edges

↪→ Inductive causation (IC) algorithm (Pearl 2000)

Refinement: PC algorithm (Spirtes et al. 1993)

Using correlation analysis (assumption of normal distribution)

I Our goal:
non-parametric test of independence on arbitrary domains
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Embedding of distributions in RKHS

I HX : Hilbert space on measurable space X , spanned by functions kX (x , ·)

(x ∈X ) with 〈kX (x , ·), kX (x ′
, ·)〉 = kX (x , x

′) ∀x , x
′∈X .

X : random variable on X .

I Mean element in RKHS:
MX = E[kX (X , ·)] and MXY = E[kX (X , ·)kY(Y , ·)]

I Conditional mean element in RKHS:

MX |Y = E[kX (X , ·)|Y ] and MXY |Z = E[kX (X , ·)kY(Y , ·)|Z ]

I Product of mean elements in RKHS:
MXMY = MX ⊗MY = E[kX (X , ·)]E[kY(Y , ·)]

I Product of conditional mean elements in RKHS:
MX |ZMY |Z = MX |Z ⊗MY |Z = E[kX (X , ·)|Z ]E[kY(Y , ·)|Z ]
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Cross-covariance operator

I Cross-covariance operator in RKHS:

〈g , ΣYX f 〉HY
:= 〈MXY − MXMY , f ⊗ g〉HX⊗HY

= E[f (X )g(Y )] − E[f (X )]E[g(Y )]

= Cov[f (X ), g(Y )] ∀f ∈ HX , g ∈ HY

I Conditional cross-covariance operator in RKHS:

〈

g ,ΣYX |Z f
〉

HY
:=

〈

MXY − EZ [MX |ZMY |Z ], f ⊗ g
〉

HX⊗HY

= EXY [f (X )g(Y )] − EZ [E[f (X )|Z ]E[g(Y )|Z ]]

= EZ [Cov[f (X ), g(Y ) |Z ]] ∀f ∈ HX , g ∈ HY
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HS norm of operator and MMD

I Hilbert-Schmidt (HS) norm of operator Σ: HX → HY :

‖Σ‖
2
HS

= Tr
(

ΣTΣ
)

=

∞
∑

i,j=1

〈ϕj ,Σφi 〉
2
HY

,

{φi}
∞
i=1, {ϕj}

∞
j=1: complete orthonormal systems of HX ,HY .

I kernel Maximum Mean Discrepancy (MMD)
(Borgwardt et al. Bioinformatics 2006)

DH(P,Q) = sup
f ∈F

Ex∼P [f (x)] − Ey∼Q [f (y)] .

P,Q: probability measures. F : unit ball in RKHS H.

↪→ P = Q ⇐⇒ DH(P,Q) = 0 (H: characteristic RKHS).
(Fukumizu et al. NIPS 2007, 2008; Sriperumbudur et al. COLT 2008)
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Unconditional independence with kernel

I HS norm of cross-covariance operator ΣYX corresponds to
MMD between Pxy and PxPy

‖ΣYX‖
2
HS = 〈MXY − MXMY , MXY − MXMY 〉

= ‖MXY − MXMY ‖2
HX⊗HY

= D
2
HX⊗HY

(Pxy , PxPy ) .

I Given characteristic RKHS

ΣYX = O ⇐⇒ ‖ΣYX‖
2
HS = 0

⇐⇒ MXY = MXMY

⇐⇒ Pxy = PxPy

⇐⇒ X ⊥⊥ Y .
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Conditional cross-covariance operator and MMD

I HS norm of conditional cross-covariance operator ΣYX |Z

corresponds to MMD between Pxy and Ez [Px |zPy |z ]

‖ΣYX |Z‖
2
HS =

〈

MXY −EZ [MX |ZMY |Z ], MXY −EZ [MX |ZMY |Z ]
〉

= ‖MXY − EZ [MX |ZMY |Z ]‖2
HX⊗HY

= D
2
HX⊗HY

(

Pxy ,Ez

[

Px|zPy |z

])

.

I Given characteristic RKHS

ΣYX |Z = O ⇐⇒ ‖ΣYX |Z‖
2
HS = 0

⇐⇒ MXY = EZ [MX |ZMY |Z ]

⇐⇒ Pxy = Ez [Px |zPy |z ]
⇐=
6=⇒ X ⊥⊥ Y |Z .
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Conditional independence with kernel

Define Ẋ := (X , Z ), Ẏ := (Y , Z )

I HS norm / MMD

‖Σ
ẎẊ |Z‖

2
HS = EZ

[

‖M
Ẋ Ẏ |Z − M

Ẋ |ZM
Ẏ |Z‖

2
HẊ⊗HẎ

]

= EZ

[

D
2
HẊ⊗HẎ

(

Pẋ ẏ |z , Pẋ |zPẏ |z

)

]

.

I Given characteristic RKHS

Σ
ẎẊ |Z = O ⇐⇒ ‖Σ

ẎẊ |Z‖
2
HS = 0

⇐⇒ MXY |Z = EZ [MX |ZMY |Z ] ∀Z

⇐⇒ Pxy |z = Ez [Px |zPy |z ] ∀z

⇐⇒ X ⊥⊥ Y |Z .
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Constraint-based learning of BN structure

∧-Structure ∨-Structure

Constraints

Independence relations X 6⊥⊥ Y and X ⊥⊥ Y |Z X ⊥⊥ Y and X 6⊥⊥ Y |Z

Joint distributions Pxy 6= PxPy Pxy = PxPy

Pxy|z = Px|zPy|z Pxy|z 6= Px|zPy|z

Mean element in RKHS MXY 6= MX MY MXY = MX MY

M
ẊẎ

= EZ

[

M
Ẋ |Z M

Ẏ |Z

]

M
ẊẎ

6= EZ

[

M
Ẋ |Z M

Ẏ |Z

]

HS norm of operators ‖ΣXY ‖2
HS

> 0 ‖ΣXY ‖2
HS

= 0

(MMD in RKHS) ‖Σ
ẊẎ |Z‖

2
HS

= 0 ‖Σ
ẊẎ |Z‖

2
HS

> 0
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Alternative measures of dependences

I Correlation coefficient (assumption of normal distribution)

I Mutual information (Kraskov et al. 2004)

(based on entropy estimates from k-nearest neighbor distances)

Y0 ∝ 1
2
N (1, 0.01)+ 1

2
N (−1, 0.01), P(X0|Y0 <0)∝N (0, 1), P(X0|Y0≥0)∝N (0, 1)

(Xω , Yω): transformed data with rotation ω in an anticlockwise direction
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Summary

I Kernel test of independence for constraint-based learning of
causal BN structure

Further issues:

I Connection to mutual information? (Gretton et al. 2005)

I Useful MMD with higher-order tensors?
e.g., vanishing of

‖MXYZ − MXMY MZ‖
2
HX⊗HY⊗HZ

= D
2
HX⊗HY

(Pxyz ,PxPyPz) ,

indicates mutual independence (more than pairwise independence).

Thanks for your attention!
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