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Learning causal Bayesian network structure

» Purely observational (non-experimental) data on a number of
random variables are given

» Estimate direct cause-effect relations between these variables,
represented by a directed acyclic graph (causal BN structure)
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Constraint-based learning

» Based on independence relations
» Weak commitments as to the nature of causal relationships

1. Markov assumption states
“given all its parents, every variable is independent of all its
non-descendants” .

2. Faithfulness/stability assumption (Spirtes et al. 1993; Pearl 2000)
states “only the independence relations are true which are
implied by the Markov assumption”.
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From independence constraints to causal BN structure

Identifying A-structure by independence constraints

o o Lo "o

(XLY)and (X LY|Z)= A-structure

Markov equivalence class of BN structures

—  Learning absence of edges in causal BN structure
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V-structure identification

Markov and faithfulness assumptions lead to a unique graph.

(XLY)and (X LY |Z)= V-structure

Identification of V-structure (collider on Z)

—  Learning orientation of edges in causal BN structure
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Inductive causation

» Finding conditional independence relations
» Taking Markov and faithfulness assumptions

1. Learning absence of edges < skeleton of BN structure
2. Learning orientation of edges

< Inductive causation (IC) algorithm (Pearl 2000)

Refinement: PC algorithm (Spirtes et al. 1993)
Using correlation analysis (assumption of normal distribution)

» Qur goal:
non-parametric test of independence on arbitrary domains
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Embedding of distributions in RKHS

» Hx: Hilbert space on measurable space X, spanned by functions kx(x,-)
(xeX) with (kx(x,"), kx(x',")) = kx(x,x") Vx,x' € X.
X: random variable on X.

» Mean element in RKHS:
mx = E[k)((X, )] and Sﬁxy = E[k_)((X, )ky(Y, )]

» Conditional mean element in RKHS:
Mx |y = Elkx (X, )| Y] and Mxy |z = E[kx (X, )ky(Y,)|Z]

» Product of mean elements in RKHS:
Mx My = Mx @My = E[kx (X, -)]|E[ky(Y, )]

» Product of conditional mean elements in RKHS:
Mx1zMy|z = Mx|z@My|z = Elkx (X, )| Z]E[ky (Y, -)|Z]
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Constraint-based learning of BN structure

Cross-covariance operator

» Cross-covariance operator in RKHS:

<£;, E:y(x'f>7{)7 = <£UQ)()/ — MMy, f R é{>71;¥6§7{}
= E[f(X)g(Y)] - E[f(X)]E[g(Y)]
= Cov[f(X),g(Y)] VfeHx,g€Hy

» Conditional cross-covariance operator in RKHS:

= (Mxy — Ez[Mxz2My 2], f @ g>HX®Hy
= Exy[f(X)g(Y)] — Ez[E[f(X)|Z]E[g(Y)|Z]]
— B [Cov[f(X),g(Y)|Z] VfEHr geHy

(&, ZYX|Zf>Hy
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HS norm of operator and MMD

» Hilbert-Schmidt (HS) norm of operator X: Hxy — Hy:

o0
2 2
153 = Tr (E75) = 3 (e To3, -
ij=1
{0321, {pj}21: complete orthonormal systems of Hx, Hy.

» kernel Maximum Mean Discrepancy (MMD)
(Borgwardt et al. Bioinformatics 2006)

Dy(P, Q) = §£Ew[f(><)] —Ey, o [f(V)]-

‘P, Q: probability measures. F: unit ball in RKHS H.

— P=Q <= Dy(P,Q) =0 (H: characteristic RKHS).
(Fukumizu et al. NIPS 2007, 2008; Sriperumbudur et al. COLT 2008)
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Constraint-based learning of BN structure Embedding distributions in RKHSs

Unconditional independence with kernel

» HS norm of cross-covariance operator ~yx corresponds to
MMD between P,, and PP,

IZyxllfs = Dxy — Mx My, Mxy — MxNMy)
= [1Mxy — MxMy 3y emy)
= D%w?{y(ny, P.Py).

» Given characteristic RKHS

IZvx|fis =0
Mxy = MxMy
Py = PP,
X1Y.

Yyx = 0]

rree
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Conditional cross-covariance operator and MMD

» HS norm of conditional cross-covariance operator X yx,z
corresponds to MMD between Py, and E,[P,,P,,]

[Zyxizllis = (Mxy —Ez[MxzMy 2], Mxy —Ez[Mx My 2])
= [Mxy — Ez[MxzMy 2] 5 v 0wy
= Diomy (PorEz [PuzPyic]) -

» Given characteristic RKHS

Syxz=0 <= [ZTyxzlfs=0
= Mxy = Ez[MxzMy|7]
<~ ny = Ez[Px|zPy|z]

=  xuiv|z.
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Conditional independence with kernel

Define X := (X, Z2), Y := (Y, 2)
» HS norm / MMD

IZyxzllfis = Ez [llfmxwz - fmx|zfmy\z||%x®ny-]
= Ez [D%wuy (Pij = PX|zPy|z)} :
» Given characteristic RKHS

Tyxz=0 IZyxzllfis =0
Mxy|z = Ez[MxzMyz] VZ
Pz = Bo[PysPys] V2

XLY|Z.

reee
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Constraint-based learning of BN structure

A-Structure V-Structure

Constraints

Independence relations XALYand X LY|Z XLYand X L Y|Z

Joint distributions Py # PxPy Py = PxP,
PXY\Z = X\ZPy|Z nylz # Px\zPy|z
Mean element in RKHS Mxy # Nix Ny Myy = Nx My
My = Bz [ My, My 7] | Mgy # Bz [ My, My ]
HS norm of operators ||):)<y||%IS >0 ”):XY”%IS -0
(MMD in RKHS) I 412 /35 = © IE 49213 > 0
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Alternative measures of dependences

» Correlation coefficient (assumption of normal distribution)

» Mutual information (Kraskov et al. 2004)
(based on entropy estimates from k-nearest neighbor distances)

Yo o« 2N(1,0.01)+1N(—1,0.01), P(Xo| Yo <0) xN(0,1), P(Xo| Yo >0) < N(0, 1)

(Xw, Yu): transformed data with rotation w in an anticlockwise direction
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Summary
» Kernel test of independence for constraint-based learning of
causal BN structure

Further issues:
» Connection to mutual information? (Gretton et al. 2005)

» Useful MMD with higher-order tensors?
e.g., vanishing of

||g'nXYZ - mxmymz”%’(x@?‘[y@?‘lz = D%’(;{@'Hy(PXyZ7 PXPyPZ)a

indicates mutual independence (more than pairwise independence).

Thanks for your attention!
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